
Journal of Computational Physics 228 (2009) 903–920
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
Immersed boundary method for the MHD flows of liquid metals

D.G.E. Grigoriadis, S.C. Kassinos *, E.V. Votyakov
Computational Science Laboratory UCY-CompSci, Department of Mechanical and Manufacturing Engineering, University of Cyprus,
75 Kallipoleos, Nicosia 1678, Cyprus

a r t i c l e i n f o a b s t r a c t
Article history:
Received 8 February 2008
Received in revised form 28 June 2008
Accepted 5 October 2008
Available online 1 November 2008

Keywords:
MHD flow
Incompressible flow
Circular cylinder
Immersed boundary method
Conducting fluid
Complex geometries
0021-9991/$ - see front matter � 2008 Elsevier Inc
doi:10.1016/j.jcp.2008.10.017

* Corresponding author. Tel.: +357 22892296; fax
E-mail addresses: kassinos@ucy.ac.cy, s_kassinos
Wall-bounded magnetohydrodynamic (MHD hereafter) flows are of great theoretical and
practical interest. Even for laminar cases, MHD simulations are associated with very high
computational cost due to the resolution requirements for the Hartmann and side layers
developing in the presence of solid obstacles. In the presence of turbulence, these difficul-
ties are further compounded. Thus, MHD simulations in complex geometries are currently
a challenge. The immersed boundary (IB hereafter) method is a reliable numerical tool for
efficient hydrodynamic field simulations in arbitrarily geometries, but it has not yet been
extended for MHD simulations. The present study forms the first attempt to apply the IB
methodology for the computation of both the hydrodynamic and MHD fields. A consistent
numerical methodology is presented that is appropriate for efficient 3D MHD simulations
in geometrically complicated domains using cartesian flow solvers. For that purpose, a pro-
jection scheme for the electric current density is presented, based on an electric potential
correction algorithm. A suitable forcing scheme for electric density currents in the vicinity
of non-conducting immersed surfaces is also proposed. The proposed methodology has
been first extensively tested for Hartmann layers in fully-developed and developing chan-
nel and duct flows at Hartmann numbers Ha ¼ 500� 2000. In order to demonstrate the
potential of the method, the three-dimensional MHD flow around a circular cylinder at
Reynolds number Re ¼ 200 is also presented. The effects of grid resolution and variable
arrangement on the simulation accuracy and consistency were examined. When compared
with existing numerical or analytic solutions, excellent agreement was found for all the
cases considered. The proposed projection and forcing schemes for current densities were
found capable of satisfying the charge conservation law in the presence of immersed non-
conducting boundaries. Finally, we show how the proposed methodology can be used to
extend the applicability of existing flow solvers that use the IB concept with a staggered
variable arrangement.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The capability to accurately simulate flows in complex geometries is one of the key current issues in computational MHD
flows. For example, many engineering problems related to the conceptual design of fusion reactors involve complicated geo-
metrical domains [1]. In the self-cooled liquid metal fusion blanket, a circulating, highly conducting, liquid metal is used as
coolant and breeder material. The interaction of this moving liquid conductor and the magnetic field confining the plasma is
likely to suppress turbulence, whereas the demand for high heat transfer rates favors a turbulent or at least a time-depen-
dent flow. Beside other possibilities, described for example in Buhler [2] or Moreau [3], an obvious way to enhance mixing
. All rights reserved.
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and heat transfer in an electrically insulated channel is through cylindrical obstacles, so called turbulence promoters, which
are aligned with the magnetic field. This concept has been investigated experimentally [4–6] and numerically [7–10].

Simulations of MHD problems are by definition computationally more intensive as compared to purely hydrodynamic
problems. First of all, apart from flow phenomena like turbulence which might coexist for weak magnetic fields, the consis-
tent inclusion of the Lorentz force involves the solution of an extra full poisson equation in order to satisfy the charge con-
servation law. Additionally, when intense external magnetic fields are applied, Hartmann layers are formed close to solid
boundaries with a thickness inversely proportional to the intensity of the wall-normal magnetic field [3]. At high Hartmann
numbers, the thickness of these boundary layers is drastically reduced. Therefore, the application of any computational
method in wall-bounded MHD flows is always complicated by the need to adequately resolve the Hartmann layers. This
requirement resembles the Reynolds number restriction faced in direct and large-eddy simulations (DNS and LES) of hydro-
dynamic flows, where turbulent boundary layers become increasingly thinner as the Reynolds number is increased. How-
ever, in the hydrodynamic case, wall models [11] and Hybrid LES–RANS methods [12] have been developed that can help
to avoid the – expensive – numerical resolution of these areas, at least for LES calculations. In MHD flows however, although
such models have been developed [13,14] for simplified cases, they have not been systematically applied and examined up to
now.

In the absence of a systematic and well-established general modeling procedure amounting to an effective ‘‘wall model
for Hartmann layers”, one has to resolve these layers numerically. Proper grid refinement close to solid bodies at high Ha
numbers, results in a high computational cost, therefore, an efficient and accurate numerical method for wall-bounded
MHD flows in complicated geometries is a necessity.

The numerical treatment of MHD flows in geometrically complicated domains has sofar relied on the use of unstructured
or boundary-fitting curvilinear grids [8–10]. Using an exponential polar grid, Mutschke et al. [8] studied the effect of mag-
netic field direction for the liquid metal flow around a circular cylinder. Recently, Sekhar et al. [9] used a multigrid method
with polar grids to examine the same MHD flow configuration at high Ha numbers and at Red ¼ 100� 500, where Ha and Red

numbers were defined based on the free stream velocity and the cylinder’s diameter d.
Non-boundary-conforming methods, which are often a very efficient choice for simulations in complicated domains, have

not yet been extended for MHD flows. These methods were initially proposed and applied for direct and large-eddy simu-
lations (DNS and LES) of turbulent flows, where computational efficiency and accuracy are imperative. Most of them take
advantage of the efficiency and robustness of Cartesian or cylindrical coordinate solvers, achieving a reduced computational
cost per node. Especially for cases where increased numerical resolution is a key issue, non-boundary-conforming methods
can lead to significant performance gains.

Several computational approaches exist that can be classified as non-boundary-conforming methods. First formulated by
Peskin [15], the IB method was the first attempt to represent a flow obstruction or a solid interface by a set of discrete forces.
Since then various modifications to the method have been proposed, leading to schemes based on a feedback-forcing scheme
[16], cut-cell approaches [17], or ghost-cell methods [18] and imbedded-boundary methods [19]. An extensive review of the
present state of the IB method, and the associated difficulties, can be found in [20]. The main advantages of the IB method,
when compared to boundary-fitting curvilinear or unstructured grid methods, are memory and CPU savings as well as ease
of grid generation [21,22]. When combined with the efficiency of direct pressure solvers, IB methods can reveal their full
potential for efficient and accurate simulations in complicated geometries [23].

In the IB method, a cartesian or cylindrical grid solver is used and discrete momentum forcing is applied in the Navier–
Stokes equations to dynamically represent the location and characteristics of the solid boundaries [19,24,25]. As a result,
flows in complicated domains, including moving and deforming boundaries, can be handled with simple orthogonal, carte-
sian grids that may not coincide with solid boundaries. The IB method has been successfully used so far in hydrodynamic
simulations, eliminating the need for body fitting domains, complicated grid generation or remeshing [25]. Recently, Yang
and Balaras [20] and Balaras [26] proposed an imbedded-boundary computational procedure that is capable of simulating
turbulent flows with stationary or moving boundaries.

The approach adopted in the present study, can be classified as a discrete forcing approach in terms of immersed boundary
methodology [27], i.e. a discrete forcing field is used to impose the boundary conditions along immersed surfaces. Although
it shares some similarities with the ghost-cells and cut-cell methods, the present approach follows the schemes suggested in
[20] and [26]. The imbedded-boundary formulation is extended to account for the electric current density field using direct
discrete forcing and local field reconstruction in order to satisfy the charge conservation law with immersed surfaces.

The present study is motivated by the belief that the IB method could bring to MHD simulations the same advantages it
offers for hydrodynamic cases, especially in regions where thin boundary layers around complicated geometries have to be
resolved. The use of the IB method simplifies grid design and could offer adequate resolution for high Hartmann number flows
at a reasonable cost. Hence it has the potential to extend the range of computable wall-bounded MHD flows significantly.

The main objective of the present study is to develop an efficient immersed boundary methodology suitable for compli-
cated three-dimensional MHD flows and to demonstrate the ability of the method to accurately represent all the important
flow features. In order to verify the accuracy of the proposed method, suitable test cases have been considered that contain
all the relevant flow patterns. Steady and unsteady flows in channels, ducts and over a circular cylinder are investigated un-
der various magnetic field intensities and directions.

In the following sections, the theoretical formulation for the MHD flow of an incompressible conducting fluid is first pre-
sented. The numerical methodology adopted is then introduced together with the extension of the IB method for MHD flows
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at low magnetic Reynolds numbers. The study focuses especially on a consistent and conservative numerical method for the
calculation of the electric potential and the current density field around immersed surfaces using the IB concept. Finally,
computational results and comparisons with available data are presented and discussed. The applicability of the method
to more complicated flows, and issues related to the numerical resolution and computational cost, are also discussed.
2. Governing equations

We consider an incompressible fluid of density q, molecular viscosity l, dynamic viscosity m ¼ l=q and electric conduc-
tivity r, flowing with velocity u1. A uniform externally applied magnetic field of intensity bo is imposed in an electrically insu-
lated domain X, with a characteristic length dimension d. Assuming that the magnetic Reynolds number Rem ¼ l�ru1d
(where l� is the magnetic permeability) is smaller than unity, the induced magnetic field is expected to be weak in magnitude
when compared to the externally applied field, and can be neglected. Under these conditions, the flow under investigation is
completely described by the set of Navier–Stokes equations for an isothermal and conductive incompressible fluid. Using d
and u1 as the characteristic length and velocity scales, scaling the magnetic field intensity with Bo and the electric field
and current density by u1Bo, the non-dimensional form of the continuity and momentum equations become,
r �~u ¼ 0 ð1Þ
o~u
ot
þ ~u � rð Þ~u ¼ �rpþr

2~u
Red
þ Nð~J � b̂oÞ þ~f u;IB; ð2Þ
where~f u;IB is the modified body force related to the IB method for the momentum [28], b̂o is the unit vector of the applied
magnetic field and~FL ¼ Nð~J � b̂oÞ is the Lorentz force. In the absence of Hall effects, the non-dimensional electric current den-
sity~J is given by Ohm’s law,
~J ¼~Eþ~u� b̂o þ~f j;IB; ð3Þ
where~E is the produced electric field and the term~f j;IB is the externally imposed current density field associated with the IB
method (explained in detail in Sections 3.2 and 3.3). The main dimensionless groups involved are the hydrodynamic Rey-
nolds number Red, and the magnetic interaction parameter N (or Stuart number),
Red ¼
u1d
m

and N ¼ rB2
od

qu1
; ð4Þ
where r is the magnetic resistivity of the medium. Stuart number N expresses the ratio of Lorentz forces over inertia forces.
The derived Hartmann number Ha, describing the ratio of Lorentz forces over viscous forces, is then
Ha ¼
ffiffiffiffiffiffiffiffiffiffiffi
RedN

p
¼ dBo

ffiffiffiffiffiffi
r
qm

r
: ð5Þ
3. Numerical methodology

In the majority of hydrodynamic simulations, the solution of the involved poisson equation for the pressure is usually
achieved by iterative (ADI, SOR, Multigrid, etc.) solvers, that consume a major fraction of the total computational effort.
In the quasi-static limit, the MHD approximation involves the inclusion of an extra force term Nð~J � b̂oÞ in the N–S Eqs.
(12), which might intuitively seem like a small overhead in computational effort. However, hidden behind this term is
the need to solve an extra poisson equation for the electric potential at each computational cycle. Thus, it should be noted
that the additional computational effort implied by the inclusion of MHD effects is quite significant.

Consider for example a typical hydrodynamic simulation that consumes a fraction of computational cost c (which is usu-
ally in the range 30–80%) for each poisson solution. For a similar MHD simulation, the cost would then be expected to in-
crease at least by a factor of ð1þ cÞ just due to the extra poisson solution required at each computational cycle.
Therefore, efficient numerical methodologies, especially for poisson solutions are even more important in MHD simulations.
Direct pressure solvers can meet these requirements, since they are fast, efficient and parallelizable numerical algorithms for
the solution of the Poisson’s equation [29–31]. However, they are by nature restricted to orthogonal or cylindrical domains
without internal boundaries. As will be shown later, that disadvantage is completely eliminated by the use of the IB method,
which allows the specification of complicated, deforming, or even moving boundaries within rectangular domains using sim-
ple cartesian grids.

3.1. Cartesian flow solver

The basic cartesian flow solver used for the present study uses a second order finite-difference scheme for the spatial dis-
cretisation on orthogonal grids with a staggered variable arrangement [23,28]. The Navier–Stokes Eq. (2) for a conductive
incompressible fluid under the influence of a constant magnetic field b̂o are solved numerically using the fractional time step
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approach [23,28,32]. Time advancement is based on a time-splitting, fully explicit projection scheme with pressure correc-
tion. In descretised form, the Navier–Stokes equations are considered in dimensionless form,
~ujnþ1 ¼ ~ujn þ Dt½aHðuÞjn þ bHðuÞjn�1 �rpjnþ1� with HðuÞjn ¼ �ð~u � rÞ~ujn þr
2~u

Red

�����
n

þ Nð~J � b̂oÞjn þ~f u;IBjn; ð6Þ
where the superscript denotes the time level and the operator HðuÞ contains all the convective, viscous and Lorentz force
terms. The last term~f u;IB, denotes the immersed boundary forcing term for the momentum. It is used to drive the velocity
field to the desired value at the immersed boundaries C of the domain in accordance to the procedure described by Balaras
in [26]. In practice, momentum forcing is applied in the discrete sense by a proper definition of the term~f u;IB for the velocity
nodes adjacent to the solid interface. Comparisons with analytical solutions and accurate spectral simulations of hydrody-
namic flows reported in [26], clearly demonstrated the retainment of second order accuracy close to solid boundaries.

The coefficients a; b define the type of explicit scheme used. For the second order accurate Adams–Bashforth scheme used
here, these are simply 3/2 and �1/2, respectively. Assuming that all properties at time level n are known, the first step of the
time-splitting scheme is realised by defining a provisional momentum field, using the fully explicit Adams–Bashforth
scheme for all terms,
~uj� ¼~ujn þ Dt
3
2

HðuÞjn � 1
2

HðuÞjn�1 �rpjn
� �

; ð7Þ
which does not satisfy continuity. Mass conservation at level nþ 1, i.e. the conditionr �~unþ1 ¼ 0, is imposed by the solution
of a poisson equation for pressure correction dp [32] according to,
r2dp ¼ r �
~u�

Dt
; ð8Þ
which is solved using a direct pressure solver. In the case of Dirichlet boundary conditions for the velocity field, the consis-
tent boundary conditions for the pressure along the immersed boundary C arerðdpÞ �~n ¼ 0, which is satisfied for the present
formulation as shown in [26]. The last projection step is realised by updating the variables for the next time level,
~ujnþ1 ¼ ~uj� � Dtrdp ð9Þ
pjnþ1 ¼ pjn þ dp: ð10Þ
Lorentz force terms in Eq. (6) were considered at time level n, which is consistent with the fully explicit nature of the algo-
rithm. Stronger coupling of pressure and Lorentz forces could be possibly achieved by using the Lorentz forces at time level
nþ 1. In that case though, pressure boundary conditions would also include contributions from the Lorentz forces, signifi-
cantly complicating the numerical procedure [33]. The procedure followed for the calculation of the electric current density
~J and the associated Lorentz force are presented in the next section.

3.2. Projection scheme for current density

Calculating current densities involves the estimation of the irrotational electric field ~E of Eq. (3), which is normally ex-
pressed in terms of an electrostatic potential as~E ¼ �rU. The electric current density as governed by Ohm’s law in a domain
X, can then be expressed in terms of U as,
~J ¼ �rUþ ð~u� b̂oÞ; ð11Þ
where the externally applied magnetic field b̂o can also be space varying. Using the electric charge conservation law, a sole-
noidal condition also applies for the electric current density, i.e. r �~J ¼ 0. Thus, a poisson equation can be derived for the
electric potential [34] at each time level n,
r2Ujn ¼ r � ð~u� b̂oÞjn ¼ b̂o � ~xjn; ð12Þ
where ~x ¼ r�~u is the fluid vorticity. In the majority of MHD simulations, Eq. (12) is solved at each time step to satisfy elec-
tric charge conservation. For boundary-conforming methods, the boundary conditions applied on ~J are imposed directly
along the explicitly defined surface C. In IB methods, that is not directly possible since the advantage of the method lies
in the dynamic representation of immersed surfaces instead of their explicit definition. Additionally, most of the efficient
sparse matrix solvers do not allow local modifications of the coefficients involved in the poisson solution algorithm at the
internal part of X.

In order to alleviate these difficulties, and in analogy with momentum, we propose a formulation for current density that
includes a prescribed forcing of the current density field according to
~Jjn ¼ �rUjn þ ð~u� b̂oÞn þ~f j;IBjn; ð13Þ

where the term~f j;IB is an externally imposed current density field associated with the IB method. The role of the space and
time varying field ~f j;IB is to drive the current density field and the involved electric potential according to the specified
boundary condition imposed along the immersed surfaces C. In doing so, one can control boundary conditions of~J along
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the immersed bodies, and different magnetic wall conductivities can be considered, from perfect conductors to perfect insu-
lators. For the latter case, the necessity of including such a forcing in IB formulation can be demonstrated. For a non-conduct-
ing, stationary surface, the proper boundary condition for the current density and electric potential are~JC ¼ 0 and oU=on ¼ 0
along C. Eqs. (11) and (12) do not provide any means of satisfying such conditions and control the behavior of~J and U close to
the immersed boundary. Instead, using Eq. (13) and a forcing field of the form,
~f j;IBjn ¼
þrUjn � ð~u� b̂oÞjn; along C

0; otherwise

(
ð14Þ
the desired condition~JC ¼ 0 can be imposed. Then, since ui;C ¼ 0, the proper boundary condition for the electric potential
along the surface is also recovered, i.e. oU=on ¼ 0. However, Eqs. (13) and (14) cannot be used as they stand, since the electric
potential is also unknown at time level n.

In order to avoid computationally expensive iterative algorithms, a projection scheme for the current density is proposed.
In the general case, the current density field can be decomposed to the desired unknown solenoidal field~Jjn and the gradient
of a scalar rU. A suitable provisional current density field~Jj� can then be defined as,
~Jj� ¼ �rUjn�1 þ ð~u� b̂oÞn þ~f j;IBjn; ð15Þ
where ~Jjn ¼~Jj� � rdU: ð16Þ
The forcing term~f j;IBjn is the external forcing field that should drive the current density field according to the boundary con-
ditions desired along the immersed boundaries and it is provided by the procedure explained in the next section. Due to the
adopted definition, it is clear that the scalar field U coincides with the electrostatic potential field. Imposing the solenoidal
condition for the field~Jjn on Eq. (13), so that the charge conservation law at time level n is satisfied, leads to a poisson equa-
tion for the electric potential difference d/,
r2d/ ¼ r �~Jj�; ð17Þ
which if satisfied, can restore the solenoidal nature of current density at time level n by correcting the provisional field~J� for
which r �~J�–0. Eq. (17) can be solved using a procedure similar to the one used for the pressure solution. In the present
study, it was solved directly, using exactly the same direct poisson solver that is used for the pressure correction. Accurate
solution of Eq. (17) is crucial and can guarantee the overall accuracy of the current density field by eliminating any charge
sources or sinks. As in the case for the momentum correction, the projection of electric current density is completed by,
~Jjn ¼~Jj� � rd/ ð18Þ
Ujn ¼ Ujn�1 þ d/: ð19Þ
3.3. Immersed boundary forcing for current densities

The IB concept is based on the dynamical representation of fluid–solid interfaces. In the present study, these interfaces are
defined by a series of line segments, parametric lines, or parametric surfaces in three-dimensions. For simplicity, the analysis
here is performed for two dimensions although it was designed and implemented for the three-dimensional space.

These parametric segments CðsÞ are originally defined through marker points and a front tracking scheme [20,26]. Then,
they are reconstructed in a piecewise fashion using polynomials of second order. Grid nodes are identified using a tagging
process by drawing the normal vector from the reconstructed immersed line to each node of the cartesian grid surrounding
the specific marker point. Depending on the predefined orientation, the sign of projection or dot product of these vectors
along the unit normal identifies if they lie in the solid or the fluid part of the domain (Fig. 1(a)). Grid nodes denoted as fluid
lie within the fluid part and are solved for, while the solid nodes do not contribute to the simulation.

Once the two phases are separated, fluid nodes which have at least one solid neighbor are characterised as forcing nodes
(F), which are actually the boundary points for the calculation. These forcing nodes do actually couple the numerical solution
in the fluid part of the domain with the boundary conditions imposed along any solid interface CðsÞ. Their properties should
be estimated in a consistent way, so that the presence of the immersed surface is mimicked dynamically according to the
desired boundary conditions. Therefore, the values imposed at the forcing nodes should consider the surrounding fluid
nodes, and the same time, reflect the type of boundary conditions along C in the discrete sense. Within the IB methodology
this is usually achieved by interpolation schemes, which consider the value on the interface JC and the value at the fluid part
of the domain. In the present study, the interpolation to the forcing node considers the value at the closest boundary point JC
and that of a virtual node JV located inside the fluid part [20] as shown in Fig. 1(b). The location of the virtual node is defined
by projecting the unit normal to the fluid part so that the forcing node bisects the distance WV (i.e. d1 ¼ d2).

Considering Dirichlet boundary conditions, the current density at the forcing nodes JV can then be computed from a linear
interpolation scheme,
JF ¼
d2

d1 þ d2

� �
JC þ

d1

d1 þ d2

� �
JV : ð20Þ
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Fig. 1. Phases of the front tracking technique as defined in [20,26]. (a) Distinguishing solid and fluid nodes, identifying forcing nodes (F), (b) defining virtual
nodes (V) by projection along the wall-normal vectors and (c) defining the interpolation stencil used for the projected virtual node.
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The current density at the virtual node is computed using a simple trilinear interpolation scheme according to,
JV ¼
XN

i¼1

aiJi; ð21Þ
where ai is the weighting factor of fluid node i and N the total number of fluid nodes considered for the interpolation (fluid
nodes 2, 3 and 4 in Fig. 1(c)). In the implementation presented here, a 2� 2 stencil has proved to be sufficient for the inter-
polation to the virtual node. As demonstrated in [20] such a scheme is capable of retaining the second order degree of accu-
racy close to immersed surfaces.

The current density forcing method described above, forms a consistent numerical algorithm for the forcing procedure
defined in Eq. (14). Once applied for all the forcing nodes in the domain, at each time level, it can dynamically mimic the
electrostatic definition of any non-conducting immersed surface C. With regards to the sources of the poisson equations
for the pressure and the electric potential, it should be noted that these should be specified at fluid locations only. Due to
the definition of the forcing nodes, they are the last nodes (before the immersed surfaces) that affect the fluid part solution.
Hence, the solid nodes do not affect directly the fluid part of the domain, and the sources inside any existing solid sub-do-
main immersed in X do not contribute at all to the simulation. These sources can therefore be defined in any matter without
affecting the simulation.

The exact location of the forcing nodes, follows naturally from the definition of variable location. For staggered discret-
isations like the one presented in Section 3.4.1, the location of each component of current density coincides with the location
of the corresponding velocity component. For cell-centered discretisations, (Section 3.4.2), the location of forcing nodes for
each component of current density coincides with pressure location. Hence, in both cases, defining the forcing parameters for
current densities does not require any extra computational effort for existing IB based flow solvers.

For stationary boundaries, the procedure described above is performed before the main solution and the neighbors of
each forcing node and their coefficients ai with the associated arrays are kept in memory. In the case of moving boundaries,
one has to repeat the procedure each time the location of the immersed boundary is redefined. Due to its simplicity, the algo-
rithm is extremely efficient, especially for three-dimensional problems, since the application of forcing requires only a lim-
ited number of operations and is easily performed in parallel.

It should be noted, however, that the calculation of surface variables as needed for the calculation of pressure and shear
forces around immersed bodies, is not a straight forward task in IB methods. Several methodologies exist for the reconstruc-
tion of the solution close to the immersed boundary [35]. In the present work, the methodology described in [20] has been
used, since it can be easily generalized and extended for 3D turbulent flows, and is appropriate for moving boundaries. Full
details of the reconstruction scheme can be found in [20].

3.4. Spatial discretisation

The standard approach to implementing an MHD exenterate, within the staggered variable arrangement, as used in the
base flow solver presented earlier, would be to collocate the Lorentz force with the velocity components at the faces of each
cell. However, due to the cross products involved in the calculation of the Lorentz forces, calculating the force field at each
location requires the gradients of the electric potential in the other two directions. In a similar fashion, the calculation of
each current density component involves the velocities in the other two directions. The effect of the interpolation scheme
and of variable location have been proved to have a significant impact on the stability of the numerical algorithm and the
scheme’s monotonicity. Leboucher [36] has clearly indicated the numerical instabilities and inaccuracies that can be gener-
ated in finite volume MHD simulations using an ordinary staggered grid discretisation. To preserve monotonicity, he pro-
posed using a fully staggered grid, where the electric potential is defined at the edges of each computational cell.
Switching to a fully staggered variable configuration, such as the one proposed by Leboucher [36], could indeed satisfy
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the monotonicity of the numerical method and the conservative nature of current calculations. However, since in this
scheme the electric potential is not collocated with the pressure, any existing cell-centered pressure solvers could not be
directly used for the poisson solution of U. Consequently, a completely new poisson solver would have to be used. Apart from
the extra programming effort, such a solver would probably not match the excellent characteristics of direct solvers in terms
of robustness and efficiency.

Recently, Ni et al. [33] also examined the effect of variable location on the consistency and the conservative nature of the
staggered algorithm. Using Taylor series expansions, they clearly demonstrated that the numerical instabilities observed by
Leboucher are due to the leading error terms present in the calculation of the electric potential gradients on non-uniform
grids. In response, they proposed a numerical scheme for a collocated grid system, which was found to be conservative
and consistent for the calculation of MHD flows at high Hartmann numbers. While such a collocated approach is promising,
switching from a staggered to a collocated grid arrangement for an MHD solver implies major code modifications. More sig-
nificantly, staggering has been successfully used to avoid checkerboard phenomena in the pressure solution, a property that
we would prefer to preserve.

Taking the above considerations into account, we propose a new numerical methodology that can be used in existing flow
solvers that are based on a staggered flow configuration. The new scheme retains the prime variable location and uses the
same poisson solver for both the pressure and electric potential solutions. In the approach we have adopted, the electrostatic
potential U is collocated with the pressure p at the center of each cell. Several choices exist for the location of the remaining
variables involved in MHD calculations (Fig. 2(a) and (b)). For that purpose, one can consider the decomposition of the cur-
rent density vector field into three parts. The first part is the electric field~JUi

, the second is the cross product~Ju and the last
part corresponds to the IB forcing~f j;IB, namely,
Fig. 2.
arrange
~J ¼ �rU|fflffl{zfflffl}
~JUi

þð~u� b̂oÞ|fflfflfflfflffl{zfflfflfflfflffl}
~Ju

þ~f j;IB: ð22Þ
Two different variants of the location of the current density and the associated Lorentz forces FLi have been considered and
tested for the present study. These are discussed next.

3.4.1. Staggered variant a
In the first variant considered, all the variables related to MHD are defined in a staggered fashion as shown in Fig. 2(a).

Since the electric potential U is collocated with the pressure location at the node center, the first term of Eq. (22) can be nat-
urally computed at each face without any need for interpolation. Thus, in consistency with the pressure gradient involved in
momentum equations, the components of~JUi

can then be computed according to,
~JUx jiþ1=2;j;k ¼ �
Uiþ1 �Ui

xiþ1 � xi

~JUy ji;jþ1=2;k ¼ �
Ujþ1 �Uj

yjþ1 � yj

~JUz ji;j;kþ1=2 ¼ �
Ukþ1 �Uk

zkþ1 � zk
; ð23Þ
where i,j or k locations are implied when subscripts are omitted. The second part of current density~Ju has to be computed
from interpolated values of the primary variables, i.e.
~Jujiþ1=2;j;k ¼ ðvjiþ1=2 b̂o;zjiþ1=2 �wjiþ1=2 b̂o;yjiþ1=2Þ
~Jv ji;jþ1=2;k ¼ ðwjjþ1=2 b̂o;xjjþ1=2 � ujjþ1=2 b̂o;zjjþ1=2Þ
~Jwji;j;kþ1=2 ¼ ðujkþ1=2 b̂o;yjkþ1=2 � vjkþ1=2 b̂o;xjkþ1=2Þ; ð24Þ
where the consistent interpolation proposed by Ni et al. [33] was used to transfer the properties to the face needed. As far as the
IB forcing terms~f j;IB for the current density are concerned, these have to be imposed on a staggered fashion also, i.e. separately
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for each component, as explained in Section 3.3. In the present variant, calculating the sources of the poisson equation for the
electric potential of the provisional current density field J� from Eq. (17) does not require any interpolation. Finally, the Lorentz
forces can then be computed from,
~FLxjiþ1=2;j;k ¼ ðJyjiþ1=2 b̂o;zjiþ1=2 � Jzjiþ1=2 b̂o;yjiþ1=2Þ
~FLyji;jþ1=2;k ¼ ðJzjjþ1=2 b̂o;xjjþ1=2 � Jxjjþ1=2 b̂o;zjjþ1=2Þ
~FLzji;j;kþ1=2 ¼ ðJxjkþ1=2 b̂o;yjkþ1=2 � Jyjkþ1=2 b̂o;xjkþ1=2Þ: ð25Þ
using the same interpolation scheme as in the case of velocities.

3.4.2. Cell-centered variant b
In the second variant, all the variables related to MHD are defined in a cell-centered fashion. The current density due to

the electric field is then computed based on a cell-centered electric potential using,
~JUx ji;j;k ¼ �
1
2

Uiþ1 �Ui

xiþ1 � xi
þUi �Ui�1

xi � xi�1

� �

~JUy ji;j;k ¼ �
1
2

Ujþ1 �Uj

yjþ1 � yj
þUj �Uj�1

yj � yj�1

" #

~JUz ji;j;k ¼ �
1
2

Ukþ1 �Uk

zkþ1 � zk
þUk �Uk�1

zk � zk�1

� �
: ð26Þ
The second part of current density ~Ju is computed from the interpolated velocity values at the cell-centers
uci ¼ 1=2ðuiþ1=2 þ ui�1=2Þ using,
~Juji;j;k ¼ ðvcji b̂o;zji �wcji b̂o;yjiÞ
~Jv ji;j;k ¼ ðwcjj b̂o;xjj � ucjj b̂o;zjjÞ
~Jwji;j;k ¼ ðucjk b̂o;yjk � vcjk b̂o;xjkÞ: ð27Þ
The IB forcing terms~f j;IB can be calculated for all components in a cell-centered fashion, as explained in Section 3.3. A linear
interpolation of the assembled current density is needed in order to compute the sources for the electric potential of the pro-
visional current density field J� according to Eq. (17). The Lorentz forces can then be computed using
~FLxji;j;k ¼ ðJyji b̂o;zji � Jzji b̂o;yjiÞ
~FLyji;j;k ¼ ðJzjj b̂o;xjj � Jxjj b̂o;zjjÞ
~FLzji;j;k ¼ ðJxjk b̂o;yjk � Jyjk b̂o;xjkÞ: ð28Þ
When compared with the previous variant, one can clearly see that fewer interpolation operations are involved, namely one
for the electric potential source and one for the transfer of Lorentz forces at the cell faces before adding them to the momen-
tum equations.
3.5. Computational cycle

The time-advancement scheme adopted for the numerical solution of the present MHD case consists of the following
computational cycle:

(1) Using the known velocity field at time level n and the electric potential Ujn�1, the provisional current density~J� field is
computed (Eq. (15)).

(2) Forcing is applied for the provisional current field according to the boundary conditions along the immersed surfaces
(Eq. (14)).

(3) Poisson equation (Eq. (17)) is solved for the electric potential difference using the forced provisional current density
field~J�.

(4) The current density field (Eq. (18)) is projected according to the computed electric potential correction (Eq. (19)), so
that the charge conservation law r �~J ¼ 0 is satisfied.

(5) The forcing for the current field is reapplied according to the boundary conditions along the immersed surfaces
(Eq. (14)).

(6) Lorentz force terms NðJ � b̂oÞ are assembled using Eqs. (25) or (28) depending on the scheme used.
(7) Pressure, viscous, IB forces, and the computed Lorentz force, are all introduced as a source term in the momentum

Eq. (7), and the provisional velocity field ~u� at the next time step is estimated.
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(8) Using the mass residual of the provisional velocity field ~u�, a Poisson equation for pressure correction is solved (Eq.
(8)).

(9) The velocities and pressures are projected to the incompressible space by applying the pressure correction (Eqs. (9)
and (10)) so that mass continuity is also satisfied.

It should be noted, that step (5) could be omitted if the Lorentz forces are computed from N½ð�rUþ ~ui � b̂oÞ � b̂o�, but in
that case the final current density field at time level n would not comply with the applied electromagnetic boundary con-
ditions along the immersed interfaces.

Within the quasi-static approach adopted here, a variable time step is used for the calculations, which is dynamically ad-
justed according to the convective (CFL) and viscous time scale (VSL) criteria: CFL < 0:2 and VSL < 0:05. Due to the efficiency
of the direct poisson solvers used, the resulting computer code has excellent parallel efficiency and requires a limited
amount of physical memory (135 Mb per million nodes). For a fully 3D hydrodynamic calculation performances of
0.28 ls/node/cycle were reached and for a full MHD problem with a space varying magnetic field, 0.52 ls/node/cycle (on
Dual AMD@2.6 GHz processors). Thus, the computational overhead associated with the MHD solution (solving the poisson
equation, computing currents with IB method, including forces, etc.) was of the order of 80%.
4. Results

4.1. Decaying vortex case

In the numerical procedure presented in the previous sections, the charge conservation law is imposed and satisfied by a
projection scheme and an electrostatic potential correction equation. The fundamental importance of the charge conserva-
tion law motivated the close examination of the accuracy that the present method can achieve. For that purpose, it was cho-
sen to first investigate the spatial and temporal accuracy properties of the method in a simple, well-posed MHD problem in
the absence of solid boundaries. In hydrodynamic simulations, similar accuracy tests usually consider the unsteady problem
of a decaying vortex [32,37] described by,
uðx; zÞ ¼ � cosðxÞ sinðzÞ e�2t

wðx; zÞ ¼ sinðxÞ cosðzÞ e�2t

pðx; zÞ ¼ �1
4
½cosð2xÞ þ cosð2zÞ� e�4t ; ð29Þ
where ðx; zÞ 2 ½0;p�. Eq. (29) satisfy continuity and form an exact solution of the N–S equations. In MHD simulations, an
equivalently elegant unsteady problem with an exact analytical solution has not been posed and utilised in previously con-
ducted studies. For these reasons, we considered the above mentioned flow problem by imposing a uniform field b̂o;y along y
direction, normally to the plane of vortex motion. In such a configuration, one can easily show that the solenoidal condition
of the current density field leads to the following equation for electrostatic potential,
r2U ¼ �2 b̂o;y cosðxÞ cosðzÞ e�2t ; ð30Þ
which has a simple family of solutions in the form,
U ¼ b̂o;y cosðxÞ cosðzÞ e�2t þ C ¼ � b̂o;yxy

2
þ C; ð31Þ
where C is an arbitrarily chosen additive constant. Under these conditions, the actual current density field as well as the
Lorentz forces are naturally eliminated. One can thus validate the basic elements of a numerical methodology by solving
such a problem and examining the time evolution of the generated electric potential and the velocity field, which should
remain unaffected under the action of the magnetic field. Hence, a successful numerical test for such a MHD flow config-
uration should reproduce in the discrete sense: (i) an identical evolution of the velocity field with the hydrodynamic case
according to Eq. (29), (ii) a non-zero electric potential according to Eq. (31), (iii) zero current density and Lorentz force
fields.

That test was conducted in the present study by performing a series of two-dimensional simulations at various numerical
resolutions using a staggered variable arrangement for the current density field (Section 3.4.1). Five different uniform grids
were tested with 162, 322, 642, 1282 and 2562 cells. All simulations were performed at the same CFL number so that a linear
relationship was established between the spatial step size Dx and the temporal step size Dt.

Fig. 3 presents the time evolution of the L2 norms of maximum errors for a total time of 2 characteristic time units d=umax.
As the mesh is refined, the method preserves a second order accuracy for both the velocity field and the electric potential.
These tests provide an evidence of the capability of the computational cycle presented in section 3.5 to satisfy both the mass
and the charge conservation laws. Additionally, the current density projection scheme consisting of Eqs. (17)–(19) seems
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Fig. 3. MHD flow in a decaying vortex with a magnetic field applied along the spanwise direction y. Effect of numerical resolution on the time evolution of
the maximum error with respect to the analytical solution. Maximum error in streamwise velocity u=umax (left), transverse velocity w=wmax (middle) and
electric potential U (right). Solid and dashed lines correspond to slopes of �1 and �2, respectively.
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capable to accurately follow the evolution of in unsteady cases with a second order spatial and temporal accuracy. The same
conclusion is drawn from similar tests that were performed for wall-bounded MHD flows, presented in the next sections.
4.2. Hartmann duct flow at Ha ¼ 500� 2000

In order to validate and verify the algorithmic consistency of the proposed projection scheme for the current density and
the electric potential correction in the presence of solid boundaries, a series of fully-developed channel and duct flows were
considered. These tests also allowed the performance investigation of the two different discretisation methods presented in
Section 3.4.1 and 3.4.2 with respect to the variable location. Since these preliminary calculations were conducted in order to
test the fundamental elements of the proposed methodology, for simplicity and clarity reasons these simulations did not use
the IB methodology or a forcing scheme for current density (which are validated in Sections 4.3 and 4.4).

A Hartmann duct flow was considered with the flow aligned along the x direction, in a duct of cross section 2d� 2d in y-
and z-directions. Using the maximum velocity umax in the duct as a characteristic velocity, the Reynolds number was fixed at
Re ¼ umaxd

m ¼ 100, while the Hartmann number considered was in the range Ha ¼ 500� 2000. All solid walls were assumed
insulating, and a uniform magnetic field was applied along the z-direction.

Periodic boundary conditions have been used along the streamwise direction, and a forcing term was supplied to the
momentum equations, so that a constant flow rate was maintained during the simulation. A relatively coarse grid of
4� 64� 64 cells was used with uniform grid spacing in x-direction. The same, linearly expanding grid was used along y-
and z-directions with a minimum grid spacing of Dzmin ¼ Dymin ¼ 0:005d, so that the Hartmann layers of thickness 1=Ha were
fully resolved.

Fig. 4(a) a presents the simulation results for the ordinary staggered variable arrangement (variant a of Section 3.4.1).
The resolution of the Hartmann and side layers was very accurately captured for this variant, and the solution did not suf-
fer from any kind of numerical instabilities. Even with a coarse numerical resolution, and a very high linear expansion
ratio of 1:1� 1:2 for the grid spacing, a fully consistent and conservative solution was obtained. The solution did not suffer
from numerical instabilities as those reported in [36] for staggered variable arrangement. This is mainly due to the inter-
polation used to transfer the properties to the face needed after Ni et al. [33]. They demonstrated that their consistent
interpolation scheme can ensure divergence-free current densities and guarantee the conservative properties of the com-
puted solutions.

In contrast, when using a collocated variable definition (variant b of Section 3.4.2), spurious oscillations were apparent,
and numerical instabilities were generated at the very first calculation steps. As shown in Fig. 4(b), current density circula-
tions were significantly distorted close to the side layers. These numerical instabilities are similar to the ones found in [36],
and could be therefore assigned to the inclusion of the u� B term to the current density field. Introducing the idea proposed
by Leboucher [36] (which was originally developed for a cell-centered definition of flow variables), did not stabilise the solu-
tion or improve the simulation results of variant b.

Therefore, the scheme based on a staggered variable definition (variant a of Section 3.4.1) was selected as more appropriate
for consistent MHD simulations presented in the present study. Extensive tests on Hartmann flows with or without side walls
at various Ha numbers verified the consistency of that scheme. Fig. 5 shows numerical predictions for the Hartmann and side



Fig. 4. Predicted current density field and numerical grid (top) and velocity (bottom) for a Hartmann duct flow at Ha ¼ 2000 using different discretisation
methods and a numerical grid of 4� 64� 64 cells. (a) Face centered, ordinary staggered definition of MHD variables [variant a, Section 3.4.1], (b) collocated
definition of variables [variant b, Section 3.4.2].
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walls against analytical solutions for Ha ¼ 500� 2000. For all examined cases, the agreement was exceptional even when rel-
atively coarse numerical resolutions were used.
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4.3. MHD flow in a diverting channel at Ha=20,100

Once the basic algorithmic procedure was verified, a series of simulations using the proposed IB method were conducted.
For that purpose, the flow in a two-dimensional diverting channel was examined with the geometrical definition shown in
Fig. 6. Two opposite-facing blunt plates of thickness 0:5d were introduced inside a plane channel of length 10d and width
2.5d to create a flow diversion at location x ¼ 2d. Solid surfaces were prescribed using the IB method as a series of line seg-
ments and circular arcs and the forcing procedure presented in Section 3.3 was used.

Once the flow recovers after the diversion, it should resemble and actually match the characteristics of a Hartmann or a
side layer (depending on the direction of the applied magnetic field), where analytical solutions exist. Two different mag-
netic field directions were considered, a spanwise magnetic field at Ha ¼ 100, and a wall-normal magnetic field at
Ha ¼ 20, with Stuart numbers N ¼ 1000 and N ¼ 40, respectively. Therefore, a relatively long domain of 10d and a low Rey-
nolds number Re ¼ 10 (based on the maximum velocity umax) were selected in order to minimise the effect of any recircu-
lation region and provide sufficient space for flow recovery at the exit of the domain.

A uniform inlet velocity profile was imposed at the inlet for all cases, and convective boundary conditions were applied
at the domain’s outlet [38]. In order to examine the accuracy of the proposed IB methodology and grid resolution effects,
three different uniform grids were used as shown in Table 1. All simulations were performed at the same CFL number and
for the same total time, so that a detailed error analysis with respect to the spatial and temporal order of accuracy could
be conducted. A total time of 40 characteristic time units d=umax was proved to be sufficient to reach steady state
conditions.

For the case of a spanwise magnetic field, an electric potential is generated and side layers are formed along the solid
surfaces. The flow close to the domain’s outlet is then expected to match exactly the case of a plane channel at identical
MHD conditions. Due to the spanwise orientation of the magnetic field, the velocity field should remain unaffected by the
existence of the magnetic field in regions where the streamlines are parallel to x-direction. Thus, provided that a sufficient
Fig. 6. MHD simulation of a diverting channel with immersed boundaries at Ha ¼ 100 with a spanwise applied magnetic field, (upper): geometrical
configuration and computational grid Gd2 (every fourth point shown), (middle): predicted distribution of electric potential, (bottom) velocity vector field
and contour lines of streamwise velocity component.



Table 1
Numerical grids used for MHD simulations in a diverting channel.

Grid Nx� Nz Dx=d, Dz=d

Gd1 128� 64 0.0781250, 0.0390625
Gd2 256� 128 0.0390625, 0.0195312
Gd3 512� 256 0.0195312, 0.0097656
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recovery length is included, the solution along the outlet of the domain should exactly match a parabolic distribution. The
same time, the electric potential should vary in the range �d < z < d, according to,
a

Fig. 7.
(x=d ¼
(every
UðzÞ ¼ �b̂o;y d2

mq
Dp
Dx

1� z2

3d2

� �
; ð32Þ
where b̂o;y is the intensity of the magnetic field along y-direction and Dp
Dx is the mean pressure gradient driving the flow.

That is demonstrated in Figs. 6 and 7(a), where a clearly parabolic velocity profile was predicted close to the inlet and
along the outlet of the domain. The distribution of electric potential and the spanwise vorticity xy shown in Fig. 7(b), clearly
demonstrates the validity of the applied forcing scheme. The proper variation of electric potential and spanwise vorticity
close to solid surfaces are recovered at both sections, while dU=dn clearly vanishes close to the immersed surface, eliminat-
ing wall-normal currents.

The three different numerical resolutions produced almost indistinguishable results for the properties of interest. A
detailed analysis of the error associated with each grid resolution is presented in Fig. 8. The variation of the L2 norm
of the velocity, electric potential and vorticity clearly indicates the retainment of a second order of accuracy in space
and time.

When a magnetic field is applied along the z-direction, the electric potential is not generated and the electric field is ab-
sent. However, due to the orientation of the magnetic field, the spanwise component of the current density Jy is present due
to the u� B term, leading to the activation of Lorentz forces and the formation of Hartmann layers.

Fig. 9 shows the predicted distribution of velocity, current density, Lorentz force and vorticity in the vicinity of the im-
mersed wall-surfaces. An excellent agreement with respect to the analytical solution is found for all quantities, even for the
coarser grid Gd1, despite the marginal resolution of the Hartmann layers with Dz ¼ 0:078d. Hartmann layers are accurately
captured in all cases, indicating the potential of the proposed IB method to represent immersed surfaces.

The error analysis performed for this case, leads to the same conclusion with respect to the spatial and temporal accuracy
of the scheme. Fig. 10 presents the computed L2 norm of the error in velocity, current density and Lorentz force. As in the
previous reported case, the method preserves at least second order of accuracy for all the associated variables.

4.4. 3D magnetohydrodynamic case

In order to fully verify the accuracy and the potential of the present IB method, the three-dimensional unsteady flow
around a circular cylinder was also studied. For laminar, purely two-dimensional flows around an unconfined cylinder
the electric field is absent and does not contribute to the computed current density~J for an aligned or a transverse direction
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of the magnetic field. For Reynolds numbers Re > 194 though, the flow becomes three-dimensional and mode-A instability
occurs [39,40]. Under these conditions, the application of a magnetic field aligned with the flow would activate the electric
field since the electric potential U is driven by the source term xx for an aligned magnetic field (Eq. (12)). Therefore, the
three-dimensional case at Red ¼ 200 was also computed in order to validate the IB methodology for the estimation of the
electric field ~E. The results of these 3D simulations are compared against previously reported data from Mutschke et al.
[41] for a streamwise applied field at N ¼ 0;0:2;1.

A non-conducting circular cylinder of diameter d was described with the IB methodology presented at a distance of
Li ¼ 7d from the domain’s inlet and the outlet is located at Lo ¼ 12d behind the body. In the vertical direction z, the cylinder
is symmetrically placed along the centerline with the domain extending to Lz ¼ 15d. Along the surface of the immersed cyl-
inder, non-slip wall boundary conditions were used. At the domain’s inlet, a constant velocity profile is imposed, while con-
vective outflow conditions have been specified for the outlet. Along the z direction, Neumann and Dirichlet boundary
conditions have been applied for the streamwise and transverse velocity components u and w, respectively, i.e.
ou
oz

����
z¼0;Lz

¼ 0 and wjz¼0;Lz
¼ 0: ð33Þ
Two different grids have been used, a coarse grid Gc1, with 113� 32� 96 cells and a finer one Gc2 with 262� 64� 192
cells. The first grid uses 20� 20 and the second 40� 40 cells to resolve the area d� d around the cylinder. Linear grid
stretching has been applied for both grids along the streamwise and transverse direction, and uniform grid along the span-
wise direction. Two different Hartman numbers have been considered, namely Ha ¼ 6:32, and Ha ¼ 14:14 with Nx ¼ 0:2 and
Nx ¼ 1:0, respectively.

All simulations started from the purely hydrodynamic field which was first computed. Starting from a steady flow, the
calculation evolved to a clearly 3D one as indicated by the formation of the vortex pairs due to the deformation of the pri-
mary vortices in the cylinder’s wake. The wavelength of these structures was found to be k � 3:4d, in agreement with pre-
vious studies [40]. For the lower Hartmann number case considered, the flow remains unstable, and a reduction in the
computed value of the drag coefficient Cd is noticed with respect to the purely hydrodynamic case. In the higher Hartmann
number case, the values of drag coefficient increase above the hydrodynamic value and the flow initially returns to two-
dimensionality. In later times, due to the action of the Lorentz forces, the flow becomes completely stabilised and vortex
shedding is diminished.

This is demonstrated in Fig. 11 which presents the instantaneous patterns for the higher Hartmann number case shortly
after the application of the magnetic field and before the return to two-dimensionality. As shown in a variety of previous
two-dimensional studies for that MHD flow, a narrower wake is produced by the action of the Lorentz forces as shown in
Figs. 11(a), (b), and (d).

As previously mentioned the existence of streamwise vorticity xx (Fig. 11(c)) acts as a source term to the electrostatic
potential (Fig. 11(e)). As a result the current density (Fig. 11(f)) is activated and the Lorentz forces eventually eliminate
the instability by opposing and suppressing vorticity.

Table 2 summarises the cases presented here and the computed coefficients, including the comparison for the hydrody-
namic case at N ¼ 0. The critical Stuart number for the transition to a purely 2D also flow was found to take place for interaction



Fig. 11. Instantaneous patterns at Red ¼ 200, with Nx ¼ 0:4 using grid Gc2. Dark and light surfaces correspond to positive and negative values, (a)
streamwise velocity u ¼ �0:05;0:6, (b) spanwise velocity v ¼ �2� 10�5, (c) streamwise vorticity xx ¼ �5� 10�4, (d) spanwise vorticity xy ¼ �1, (e)
electric potential U ¼ �3� 10�5, and (f) streamwise current density~Jx ¼ �3� 8�5.
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parameter values 0:3 < Nx < 0:4 as in the study of Mutschke et al. [41]. All predicted quantites were found in a very good
agreement with previous studies for both numerical resolutions used. These global characteristics provide strong evidences
about the accuracy of the proposed IB method, since they are closely related to the space and time variation of the forces ex-
erted on the immersed cylinder.



Table 2
Predicted values of lift, drag coefficients, length of the recirculation region Xr and St numbers for the three-dimensional hydrodynamic (N ¼ 0) and MHD flow
around a circular cylinder at Red ¼ 200.

Case (grid) Nx Cd C0l Xr St

Present (Gc1) 0 1.29 0.50 0.97 0.204
Present (Gc2) 0 1.30 0.63 0.87 0.204
Zhang et al. [40] 0 1.29 0.53 – 0.201
Mutschke et al. [41] 0 1.30 0.60 – 0.197

Present (Gc1) 0.2 1.04 0.07 2.42 0.174
Present (Gc2) 0.2 1.08 0.09 2.23 0.172
Mutschke et al. [41] 0.2 1.07 0.09 – –

Present (Gc1) 1.0 1.17 0.0 3.13 –
Present (Gc2) 1.0 1.20 0.0 3.10 –
Mutschke et al. [41] 1.0 1.19 0.0 3.11 –
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5. Conclusions

The objective of the present study was to investigate the extension of the IB method for wall-bounded MHD simulations
of liquid metals, which are of fundamental importance and are associated with high computational cost. A fully explicit pro-
jection scheme for current densities has been proposed using an electric potential correction. A forcing scheme was pre-
sented to simulate the location of arbitrary shaped non-conducting immersed surfaces inside the domain. The presented
computational methodology can be easily implemented to extend the applicability of existing cartesian flow solvers that
use a staggered variable arrangement.

Two different discretisation schemes were tested for the arrangement of the Lorentz forces and current densities. The
cell-centered formulation was found to suffer from severe numerical instabilities, while ordinary staggering of current den-
sities and Lorentz forces was proved to form a consistent variable arrangement with the flow solver used. In both cases, the
electric potential was collocated with pressure so that the identical efficient direct solver was used for both variables in order
to avoid computational complexity. The combined application of fast direct pressure solution and the IB method for the rep-
resentation of complicated geometries was found to highly enhance computational efficiency, a crucial consideration for the
computation of wall-bounded MHD flows.

Several steady and unsteady fully-developed and space-developing test cases were examined to validate the numerical
methodology. All the examined cases were found to be in a very good agreement with existing analytical solutions and pre-
viously reported studied. Provided that the Hartmann and side layers are adequately resolved, the produced simulations
have also indicated a very weak dependence on grid resolution. For all the test cases considered, the combined projection
method and forcing scheme, as proposed herein, were found to recover the proper near-wall behavior for the current density
field and the electric potential, while satisfying the charge conservation law in arbitrary shaped immersed surfaces.

From all the computed cases, it can be concluded that the proposed extension of the IB method can provide a valuable
numerical tool for efficient and accurate three-dimensional simulations of wall-bounded MHD flows with arbitrarily shaped
non-conducting surfaces. The extension of the method to MHD flows with conducting walls is under development.
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